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‘NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1170

ON SUBSONIC COMPRESSIBLE FLOWS BY A METHOD OF CORRESPONDENCE
I — METHODS FOR OBTAINING SUBSONIC CIRCULATORY COMPRESSIBLE FLOWS
ABOUT TWO--DIMENSIONAL BODIES

By Abe Gelbarid
SUMMAR¥

By means of the general solutions of the hodograph equations for
compressible flulds, certain solutions corresponding to solutions of the
hodograph equations of an incompressible fluid are used to find flow
patterns of compressible fluids. When the adlabatic equation of state
is used, only a general method 1s ocutlined.

The method appears to lead to the solution of the problem of sub—
sonic flows with circulation around arbitrary bodies, as the method of
Theodorsen does for incompressible fluids. A second paper, part II,
1llustrates the method for some given bodies. For the linearized equa—
tilonr of state, the results obtained include some of the results of Von
Karmén and Tsien, as well as some of the recent results of Bers. The
method can be used for flows with circulation as well as without circu—
lation

INTRODUCTION

It is well known that the nonlinear compressible—flow equations in
the physical plane can be reduced to linear equations which have the
form of generalized Cauchy-Riemann equations by the change of the inde—
pendent variables in the physical plane to the independent variables of
the hodograph plane. The successful technique applied to the solution
of the incompressible—flow problems around given bodies was achleved -
only because the theory of analytic functions had been developed pre—
viously. It would, therefore, be suspscted that similar results for the
theory of compressible fluids could be obtgined 1f there were developed
8 theory corresponding to the theory of anslytic functions for the gen—
eralized Cauchy-Riemann equations representing the flow of a compressibla
fluid in the hodograph plene.
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Development of such a theory has been partly achileved by the theory
of S-monogenic functions (references 1 and 2). This theory has not
yot attained the perfection that the theory of analytic functions has.
However; the I-monogenic Taylor series and the XI-monogenic, Leplace
transforms may be partly able to overcome the weaknesses of this method.
Some efforts in this direction are being made in this paper.

Even with the complete theory of I-monogenic functions ome of the
chief drawbaecks of the approach lies in the difficulty of transforming
the solutions from the hodograph plane to the physical plane.

The method of the theory of correaspondence has been very briefly
outlined in reference 3. The procedure is to obtajn the flow of an in—
compressible fluild around some given closed body, to transform the com—
plex potentlal of the flow to the hodograph, and then to obtain the
particular I-monogenic function of the infinite set of solutions which
possesses the deslred propertiles.

It may seem, at firet, that this technique is too general to be of
practical use, but there already exist some interesting results of the
applicetion of this method. Furthermore, this technique is certainly
not new. It has been used with much success by Chaplygin, Von Karman,
Telen, Bergmen, Bers, end others. (See references 4 to 12.) However,
much is believed to be new in the specific use of this method when
employing I-monogenic functions. When the method is applied directly
to that of & source and a sink of an incompressible fluid, the method
Fields a source and a sink of a compressible fluid. o

It is the aiim of this paper to elaborate on the correspondence
method in & general way and to apply it in particular to the flow of a
compressible fluld under the linearized equation of state. It should
be mentioned that this method has already been epplied, under the ag—
sunption of the linearized equation of state, by others, notably by
Cheplygin, von Karmsn, Teien, and Bere.

By dealing with the method in all its generality, s formmlie ig oOb—
tained involving an arbitrary analytic function. By choosing particular
values of this arbltrary function, of which the derivative is regular in
the exterior of a reglon incliuding the origin, the particular formmlas
of Tslen (reference 6) and Bers (reference 8) are obtained. Once the
arbitrary anelytic function is determined for a given flow, velocitles,
-gtagnation pointe, and so forth,; can be readlly computed. In a pecond
paper by Bartnoff and Gelbaxrt (reference 13), some flows around given
“bodies are calculated.

This investigation was carried out at Syracuse University under
the sponsorship and with the financial assistance of the Natiomal
Advigory Committee for Aeronsutics. This report was submitted in July
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1945. The author wishes to express his thenks to Mr. Bartnoff for the
velueble assistance rendered in the preparation of this report and to
Syracuse Univereity for technical asslistance and cooperation.

SYMBOLS

k,a,B constants

P pressure
o] density
q veloclty

p1,91 perticular values of the quantities

o subscript referring to the state of the fluld at rest
u horizontal velocity

v vertical veloclty

e angle that velocity vector makes with horizontal

9 velocity of undisturbed streem

q distorted velocity

a veloclty of sound i
W complex variable in distorted hodograph plane

c complex varieble in hodograph plane

z complex variable in physical plane

M Mach number (q/a)

P, P potential functions
U, ¥ gtream functions ) —_
Q complex potential (@ + 1)

¢ complex variable in auxillary plane

7 ratio of specific heats
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K congtant depending on velocity of undisturted stream

K = (l -i-,/—;.m+ 0_2;>

G(t) complex potentlal of an Incompressible fluid in auxiliary plane

Iy clrculation of an incompreesible fluid
T an analytic function of the velocity q
W(n),iﬁ(n) generalized complex powers
Q(n),Q*(n) generalized real powers

generalized differentiation

y generalized multiplication

Cnﬂ, binomial coefficlients

E generalized complex exponential function
c,c* generalized real cosine function

g,8% generalized real sine function

LE generalized Laplace transform

( ) complex conjugate of ( )

l I absolute value symbol

COMPRESSIBLE FLOWS UNIER THE ASSUMPTION OF
THE ADIABATIC EQUATION OF STATE
The four basic relations for the potential flow of a steady two—
dimensional fluld that will be assumed are:
Equation of atate, p = kp? (1)

where
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P pressure
o] density
Y ratio of the specific heats .
k constant

Bernoullits equation,

2 a;
L. A congtant (2)
2 p

The continuity equation,

div (‘-39;?{>=o : | (3)

and the cilrculation equation (for irrotational fluids),
curl (g) = 0. (%)

The veloclty of sound is given by : ’ ToL =

2 _8p o .y
a P (5)

From equation (5) the Bermoulli equation can be written in the form
2 d,
-q-'e-— +f a® —‘-;—) = constant (6)

which often is more convenient. From these assumptions on the fluid,
the first two equations give rise to the relations for density, pressure,
the veloclty of sound, and so forth, in terms of the velocity only. The

third and fourth equations give rise to the equations of motion of the
flow,

The subscript zero on the variables p, p, and a will indicate
the particular value of the variable at & stagnation point. It will be
agsumed throughout that
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Po = 8y =1 (1)

This is equivalent to introducing the dimensionless variables p/po
and q/a.

From equations (1) and (2), with the aid of equation (5), the fol-—
lowing well-imown relations are established:

aagaoz;{(y._l)/gjqa _ (8)

X
- 2\ P

2 a°2
y
—-1g3\ " 73
=3, 1+ 25 T (9)
o L
— Y1
p:-po<l-—z..._..—l._9.—.é.)
2 a
.2__1_-
=p, (1L LN T (10)
a2 g2
M2=...cil.§£
p ag
-1
= g2/ (%2 - Z—-é-—“ q2-> (11)

These quantities are all given in termes of the single variable gq.

From the basic relations (3) and (4),and the fact that the flow is
potential, there exist two functions ¢, +the potential function, and ¥V,
the stream function, that satisfy the equations

(px— l\py -}
) (12)
CPy'=i'\|’x _)
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where the subscripts indicate partial differentiation with respect to the
variables indicated. The independent varisbles x and Yy are the coor-
dinates in the physical plane of the position of the particle of the
fluid. System (12) represents the flow of a compressible fluid.

Let u and v be the horizontal ahd the vertical velocitles, re-
spectively, of a particle of the fluild at & point (x,¥ ). Then

q cos 6

u

(13)

v q sin 6

where q 1s the magnitude of the velocity —5_, and © the angle that q
makes with the x—saxis.

From the physical definitions of the potential function ¢ and the
stream function ¥, it follows that :

dp = u dx + v dy (1k)
dy = — pv dx + pu 4y (15)

Since 49 = @, dx + @y dy and Ay = Yy dx +yy dy, system (12) can be

czbta;.ined directly by comparing these equations with equations (1h) and
13). . : : .

From equations (14) and (15) it follows that

dcp+1-i=dill=udi+vdy+i(—vdx+udy)

(u = iv)(dx + 1 dy)

LI}

g_e"ie dz - . . ; e

where 2z = x + 1y. Thus it follows that
1o :
dz = &— (dq; + & aw) (16)
q p S

In the hodogreph, the coordinates are the polar, coordinates (q,0).
Equafion (16) is in the nature of a transformation from the hodograph
coordinates of the flow to the physical coordinates (x,y). It is this
fact that makes equation (16) of fundamental importence for the approach
used in this paper.
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Upon eliminating first one snd then the other of the two unknown
functions, @ and Y, from equations (12), the second—order partial

differential equations
(s0x); + (oy) ;= © )

<al“"x>x* <%¢V>y=° (18)

are obtained

From equation (1l4) it is deduced that
2= /o + 9° (19)

go that p is a function of the unknown ¢. ZEguations (17) and (18)

are therefore nonlinear. It is precilsely this condition that has led
previous investigators to transform the flow equations from the independ-
ent variables (x,y) in the physical plane to the indspendent variables
(g,8) in the more geometrically complicated hodograph plane. As will be
ghown, these geometric complications can be circumvented alter the lin—
earized equations in the hodograph variables are used to advantage.

The flow eguations in the hodogreph variables have bsen derived
from equations (12) by many previous writers. For the gake of complete—
ness, however, an outline of a derivation will be presented here. - (See
reference 10.)

Equation (16) is first differentiated with respect to 6:

dz _ 1 010

=L = 20

¥ q ( pae (20)
and then with respect to q: i

—a-5=-3-'eia<?+i-l-'-a-:-{ (21)

9% ¢ p 9q

Equation (20) is differentiated with respect to q:

3%z 19[ 1 dp 1 % ] 1,10
= @ -——— p ] e e (
9qd8 g2 96 dq pg 6. dq 86

3@ (22)

° n4
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and equation (21) is differentiated with respect to 6:

2 ' : ' 2 2 .
22 =;eis<@+iléy>+;ew_§_ﬁ_+ii—a—“’— (23)
3 3 q p dq q 36 dq p 36 dq

Since the left—hand sides of equations (22) and (23) are equal, it fol—

lows that
116799 4 1oV
a 2 " b [ q® ae <pq> ] (2)

The flow equations in the hodograph variebles are obtained by egquating
the real and the imeginary parts of equation (24):

W
39 _ g v
9 p dq
' (25)
g (
dq dq pq 86
From equation (11)
gﬁ:._QME
dq q
It follows that
jL.(;l.) =1 do 1 A,
dq \pq p%q dg pg® . _
= _EE M2 - _EE ='_}E (MZ — 1)
Pa o]0} pPa
Equetions (25) can now be written in a more suiteble Form:
d B\ A
o _ g oY
0 p g
\ | (26)

d _ _1=M Y
dq pa 36

J
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The fact that M and p  are functions of q only makes equations
(26) linear. These eguations can be handled mathematically with much
greater ease than can the nonlinear equations (12) in the physical plane.
The theory of Y-monogenic functions has been set up for just this pur—
rose. Though'the solutions of equations (26) that are obtained give the
complex potential of the flow in terms of the veloclty of a particle of
the fluld rather than in terms of the position of- the particle, the fun—
damental transformation, equation (16), enables these solutions to be
trensformed beck to the physical plane. The fact that the right—hend
side of equation (16) is an exact differential facilitates greatly the
brocesgs Of carrying out this transformation.

SOLUTIONS OF THE COMPRESSIBLE FLOW EQUATIONS AS FUNCTIONS
OF THE HODOGRAPH VARIABLES

Equations (26) can be written in a more general form for the purpose
of mathematical treatment:

-
- oY
'g‘cg‘ = T1(Q.) 3q
> (27)
3 _ _ 3V
5, = Tale) 55 )

where T, and T, are positive analytic functions of g. The condition
that T, be positive is equivalent to assuming that the flow romains sub—
sonic. Many of the mathematical results that will be precented here hold
also when Tp becomes negative, so that flows involving supersonic ve—
locities can be treated. This has been carried ocut elsewhere for very

special flows. (See reference 3.}

Congider the function represented by the line integral

F(o) = ¢(8,q) + 1§ (8,q)

9;(1 N 6 q
J (cpde T (Qy dg) + 1 (\yde * 5 aq> (28)
0s% os%o

1

where 6p, go are fixed values of 6 and q end o = 8 + iq. By

virtue of equations (27) a simple computation verifies that each of the
two integrands in the right—hand side of eguation (28) is an exact differ—
ential.
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This establishes that F 1is a function of the point (6,q) and
has the same value when the integration is taken along any path, providsd
proper regard is given to singularities.

The second important fect sbout F(G,Q) ig that its real part @
and its imaginary part ¥ again satigfy the system of eguations (z1).
This affords a method of genera&ing particular solutions of systen (21).

It is trivial that when @ = 1 and ¥ = O, this pair is a solu-
tion of equations (27). When this solution is substituted into equa—
tion (28)

d + 1Y = W(o) ]

1 .
=e+1f———dq (29)
Ty
o

If the real and the imeginary parts of equation (29) are again substi-—
tuted into equation (28), the next solution gives -

q q
2 2 2
w()=e=+216 L ogg -2t /7 L aq (30)
. Tl P 2. Tl
(o] Q

o
The superscript 2 in parentheses indicates that the function has the
nature of a power, as is observed when T3 =T, = L. Here equation (30)
reduces to (68 + 1g)2 = o2.

The notation F(og,;0), 05 = 65 + ig,, indicates that 6, and q5
are the lower limits of integration in equation (28). For example,

q q
2 2 2
W2 (0 s0) = (0 - 0)% + 21 (6 - 6,) _?J-‘-dq_e-etha /q,r—l—-dq
. 1 - - 1
o 73] 4o

2 -
and corresponds to the function (c - 0p) . When o, =0, E(co;o) is
usually written F(ag). '

Let
(o)

O
1]
-
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n times

r‘ ~

n! L. To « o « L dqn, n odd
) T, 8 T,
n -4 ] - 2 .
Q( (q) = < n times (31)
nt f T L L a B n even
n. P Tl L] . . Tl q »
\. [}

If this operation is repeated n times the resulting solution is

W@ 2 (o4 1)@

g0 27 B (32)

n
= C

V=0

v

where Cn,u ig the ¢ th blnomial coeflicient.

If another trivial solution is teken as & first solution, say,
¢ =0,y =1, and substituted in equation (28), 1t follows that

F(o) = 1.W(o)

1 (o)

1(6 + f/ﬂ Ty da) _ (33)

]

The symbolic notation 1.W i1is used to represent s generalization of the
concept of-multiplication. It will be seen that this notation is rather
useful. When this process of substitution is repeatsd

(2)

(2) ~
iW(o.)

1¥W(g)

Let

and

i(62+21G/Tqu—2!/T%/T2dq2> (34)
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ot - ~ - .
1 n
I T . . . T d'
n’f Z[TE' f 2 da-, n od
Q,*<n) = / ) ’ .
ln'. /% To o « o /Tg aq® n  aven

Again, if this operation is repeated n times the resulting solution is

(35)

1wl® o g%

(n)
& n— (nv)

=1 ) 6”1 T e (36)
£ S

[

v

Finally, if the trivial solution ¢ = a, ¥V = B is teken, a and B
being constants, n—repetitions of the operation (28) yield the solution

a-W(n) = or,W(n) (o) + B [i-W(n):‘ (37)

where &a = o + 18.

Complex—valued functions of which the real and imaginary parts sat—
isfy the system 826) are sald to be -monogenic functions. Thus,

W' ana 1W\ = i ) ave s —monogenic functions. These are more
specifically referred to as formal powers, since when Tp = Tz = 1, they

reduce to o = (6 + 1g)® and i10™ = 1(6 + ig)®. The formal product of
the two solutions a and wn) g a-W(n), which itself is a solution.

Tt should be noted that the ordinary product aW(® is not a solution
of the system (26) when &a is complex.

As T-multiplication of a constant end a formal power was intro—
duced, so may I-—integration be introduced. The IZ-integration of the
T-monogenic functiony f(o) =@ + iV, 1is defined as

F(o) =@ + 1¥

og | oq '
=f (cpd.e—'fg\lqu)+i/ (\jld6+-.|-.l-;(pdq> '
- f 2@ay 0 (38)
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The Z refers to the coefficient matrix of system (27).

- 1 7y

s (39)

—t

17
2

And Fdifferentiation of the I-monogenic function, f£(o) = ¢ + 1y,
is defined as

t’:(g) 3 .d_ﬂf)_

% c
= @x + 1yx (h0)

From the relatione of equations (27)

=71W_T_l;q,y (41)

Agein, when T, = Tz = 1, g-integration and p-differentiation
reduce to ordinary complex integration and differentiation. s

A more elaborate definition of I~integration and differentistion
has been given in reference 2. It has been shown in reference 2 that

22X o (v2)

and

L/'lf“ (6)dy, o = F(o) (43)

Thus, Z-integration and ZI-differentiatlion are inverse procegeses. Also,
the F—derivative of a I-monogenic function 1s a I-monogenic funoction.

From the preceding definitions it can be verified by direct compu~
tatlion that the I-—integration and the I -differentiation of the formal
povers follow similar rules to thoge of ordinary integration and diffex—
entation of the powers of a complex variable; more precisely,

ar{n+e)
f ev®a_q i (k)

n+1l
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and

&y [a.w(n)] - new &) (u5)
dZZU . .

Since system (27) is linear, the sum of two solutions is & solution.
Hence, a formal polynomial of the nth dsgree,

£(0) =8 + ayW 4 « o« +ag W, ap#0 (16)

is a T -monogenic function. The formal power series

£(o) = Z o) I )

n=o

represents a X -monogenic function, provided the series converges uni-—
formly and absolutely in some nelighborhood of oo.

It has been shown (reference 2) that every complex solution of
system (27) can be repregented uniquely by a formal power series of the
form of equation (47). (This statement is true only when T; To > O,
that is, in the elliptic case or subsonic flow.) The coefficients are
given by the formulse

n

dzf(o)

en = —x|. (48)
d.zO' g = 0y

Since every solution of system (27) can be represented, at least
in some neighborhood, as & formal power series and since every complex
potential in the hodograph variables of & compressible fluid is a solu—
tion of system (27), it would appear that it remains only to choose that
particular golution which 1s the desired flow around a gilven body with
prescribed conditions. This approach, however, still has some very
gerious difficulties.

The formal powers presented previously avre solutions of system (27)
in closed form and are valid throughout their regione of regularity.
The first powers W(o) and i.W(¢) are known to represent a compress—
ible vortex, respectively. The higher powers sppear not to represent
any flows of interest. Linear combinations of the powers, that is,
formal polynomials, have not yet been studied sufficiently to determine
whether they represent flows of interest. The solublons represented by
formal power series are first, not in closed form and, second, not valid
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throughout their reglons of regularity., Furthermore, since in asrodynem—
ics the majority of solutions of intereet are those that are regnlar
throughout the exterior of a closed region, solutions corresponding to
the enalytic functions o 2 must be obtained in either closed form or

in a serles that can be extended throughout its region of regularity.
What is most deslred 1s a theorem analogous to that of Laurent in ana-
lytic functions, for -monogenic functions. Such a theorem, if it can
be found, might guickly lead to the solutions of the major problems in
compressibillity.

It 1e hardly hoped that the complicated problem of compressibility
can be solved in any simple way. Any results in thie direction, there—
fore, are of interest.

Some progress along these lines has been made by Bere and Gelbart
(reference 2) by extending to I-monogenic functione some of the results
on the Laplace trangform. These give, in closed form, solutlons of
system (27) that are different from the formal powers a-W(n}, and in
half planes correspond to the analytic functions o2,

Conglder the function

wRegen) = ) Gt Ve o9
n=o0 - .

where as before a = a + 18 (see references 1 and 2) and «a is real.
For the sake of brevity

1-E(oy5a,0) = E{og50,0)
(50)
E(0sa,0) = E(a,0)
This function is termed the "Sexponential function" for obvious
reasons. '
A simple computation shows that
af .
E(a,0) = e [c(m)Q) + 18(a,q)] _ (51)
and
= 1% rox B
1.BE(a,0) = 10 [c*(a,q) + 1% (a,q)] (52)

where
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= n =n 3
olwa) = ) g o)
n:° oo 5 (53a)
) = ) S (g
n=0 J
() = ) (e () @ |
’ — (on + 1)t
n=o > (53b)
g*(a,q) = % _(:if_fffi Qk(En‘“l)(q)
S (e 1) J

From the definition of E(a,c) and that of Y —differentiation, it
is clear that

L = .
izo [E(a,0)] a E(a,q) (5%)

Further properties of functions c, s, c¥, and  s* are

s{@,0) = g7 (a,0) = 0
(55}
c(m,o) = c*(q,,O) = ]
and )
g*(o,q) = o %
8%t (a,q) = & Ta(g)e* (a,y) (56)

—

ct(a,q) = —a Tx(a)s(a,q)

ot (me) - Sl
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the differentiation being with respect to g. These functions may be
regarded as ggneralizations of the trigonometric functlons and have many
properties aniiogous to those of the trigonometric functions. For
example, they satisfy Sturm-Liouville differential equations and possess

such properties as

cla,q)e*(a,q) + e(a,q0)8*(a,q) = (57)
Now consider the function

£(a) = Ly [¥(a)]

w

=f F(a) + E(~a,0)da (58)
A _

where F(a) = Fi(a) + 1Fz(a) is a complex—valued function of the real
variable o, Fi(a) and Fp(a) being real functions. This is called
the I-lLaplace transform of F{a), for when T; = Tz = 1 the integral

in equa%ign (58) reduces to the ordinary Laplece transform of the func—
tion F(a). )

Equation (58) may be rewritten in the more convenient form

f(o) = 9(6,q) + 1y (8,q)

=L//1Fl(a)E(~a,a)da tj/q Fola) [1+E(~a,0)] da
[o =" o} co
=fe—°'9 c(x,q)F; (a)da — if o s(a,q)F; (a)da
°o Yo o
+ 1 //we_ﬁe c*(a,q)Fa(a)da +J/n o ¥ s*(a,q)Fs{a)da (59)
*o ~o
Then
g (x,q) =/ o c(a,q)F; (x)da +/. 0% g% (a,q)Fa(a)de  (60)
and ° - "

¥ (8,q) = —fe—“e s(a,q)F (a)do +’/‘e".’9 e~ (a,q)F=(a)dn  (61)
%o Yo

Two facts may be demonstrated about the function in equation (58):
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1. If B is the abscissa of convergence of the Laplace integral

J/° e—ab F(a)da (62)
o

then the generalized Laplace integral

=<}

f F(a) - E(—,0)da (63)
A _
converges uniformly in the semi—-infinite strip

6> 6,>8
i< a4z Lo

2. Integral (63) represents & I -monogenic function in the open
half plene 'of convergence of integral (62).

Because of theorem 2, expression (63) represents a new classg of
solutions of system (27) in closed form. Hence, for every function
F(a) for which integral (63) converges (from theorem 1 this class is
known to be wide), expression (63) is the complex potential of a com—
pressible flow in the hodograph coordinates.

For certain functions F(a) it is easy to show that the formal
series expansicn of function :

o

fla) = /F(a) ‘E{-~a,0)da
*o

converges in a smaller region than does fﬁnction f(az). The I-Lsplace
representation of a function may thus be regarded as a means of contin—
uing analyticslly a function that is given in the form of a formal power

geries.
= / e ¥ do (64)
"o

in the right half plane, it seems natural to define the negative T —
power function by oo .

W(_l) =‘//1E(—m,d)da (65)

(e}

Because

alk
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Since I —differentiation under the integral sign is permitted, rep—
resentations for the higher negative I -—powers can be obtained. By Z-—
differsntiating each side of equation (65) n times and using equation
(54), it Follows that

- - [w(-l):! =fE(—-or,,o)ocn da (66)
d’Z g o

In view of equation (66) it seems convenient to define the negative
L -powered functions by

w(‘n) =/’E(—a,a) T da, (67)
. o (n s l)'.

Generalizations of other special functions of a complex. variable may be
cbtained in a similar way.

In order that functions W("'n), as defined by equetion (67), play
a similar role to that of the inverse powers it wculd be neceassery to
ghow that they possess a pole of the nth order at the origin and pe )
regular everywhere else. This has not yet been shown. In fact, W -n
is defined only for the right half plane, Rlo > O. It can be defined
in the left half plane, Rlo< O, by

™ 3
W(ﬂn) =fE(a.,o) 4 (68)
. (n - 2!
o

On the imeginary axis other than at the origin it can be defined as the
limit of the function as o approaches a point on the imaginary axis.

It has not yet been proved that W o s defined in the right and the

left half plane by equations (67) and (68), respectively, is continuous
across the imaginary axis. If ite truth i1s assumed, some progress might
be made in the study of compressible flows.

In order to study the flows that arise from these solutlions, 1t 1s
neceseary to transform them from the hodograph back to the physical
plene. _

Conaslder the solution
QP+ 1Y = win)
- r —r ~(r)
i o, e+ T g (69)

n==0



NACA TN No. 1170 21

The real part is R . o _ S
' 2 .

o= ) ()T 0 ap T P (70)
r=o0
and the imaginary part is
n—i
=]
r n—2r—1 (=2x+1)
Ve ) D) Ogan Q (72)

r=0
where the brackets in the upper limit of the summation indicate that the
integer chosen 1s the smaller one nearer to the number within the
brackets.

After substituting (70) and (71) into equation

a _eie 1
z = — (dp + = dy)
q P

i8
- i
s [cpe d.e'+_cpq., dg + . g a0 -f-wlq d.'q)] ) N (72)
and integrating, it follows that
ans+(-1)2*1
. ’ 4 ..
z=e" {i— Z [(—1)r(n—2r)cn,2r i
. r=o . o
n L5 (m = 2r 1) R 2T-1-8 -'
[an-s+(—1)n+.l] o - - o RTEoLoms
Z
1 r (2r+1)
s L E [(—1) (2= 20 = 1)y opey 9 :
r=o
n-ar-z e
8 (n—2r-2)!t en—-ar—s—z]
Z ' (n-2r-g-2) | (73)

B=0
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Equation (73) together with eguation (69) can be regarded as the
parametric equations of the compressible flow of @ + iy in the physi-
cal plans.

Similarly, for the solution

P+ 1y = 15 (@)

=1 fﬁ 10y p O ge (¥ (T4)
= . . A
[ [2n——3+(—1)n+1 }
) 4 .
z = eie \% E:. [(—l)r(anr)cn,zr Q*(2r) . o )
r=o - .=
- n—2r— : -
—f‘ * 462 (n—2r - L)t en_zwl]
(—1)B+1 s=0 (n—2r—g_~l)i
en—s+(~1
e
¥ ?nl‘i Z [(‘1)r(n - 2r — l)Q*-(arJ'-l).
r=0
n—2r—2 s (8 - 2o — 2)1 g2 } -]\ 5)
o {n—2r —a—2)! 4

-

By taking linear combinations of the formal powexr solutions, other
flows can be obtained in the physical plane in parametric form.

If the generalized Laplace integral solutions are taken, then
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@+ i = J/QF(G)~E(—G,G)QG
“o . —_
- f o ¥ [cm,q)ma) + c*(a,qma(a)] da -
o} (e} . . -
+ 1\//ﬁe_qe [c*(q,q)Fg(m)da - % s(a,q)Fl(&i] do
and o
* (1-a)6 _ .
z = - %f%(:::—)— [c(a,q)Fl(u) + B‘*(%‘!.)Fz(ﬂ'l)] dor

-~ ;15 i‘;ii—'?-e- [c* (0, @) F2(a) -s(a,qm(a)} da (76)
r} 0 )

Further investigation is required to determine precisely under whet
conditions the flow is 1 around a closed body and uniform at infinity.
These investigations seem within reach by the method here indicated.

This could yleld mixed subsonic—supersonic flows with subsonic free—
stream velocities under the assumption of the adisbatic egquation of staﬁe.

As an application of the method outlined in this paper, flulds of
which the flows are everywhere subsonic (more precisely, flows satisfy—
ing the linearized equation of state) are chosen. Precise conditions
are obtaimed for flowe sround closed bodies with prescribed velocities
at Infinity. Flows under these hypotheses have been investigated with
much success by Chaplygin, von Karman, Tsien, Bers, and others. Of par—
ticular interest in thile connection for flows around closed bodies is
the work of Bers (reference 8). _ .

In the sequel to the present report (reference 13) a detailed inves—
tigation of the flow around a circle is made (under the assumption of the
linearized equation of state). This is done primarily because the flow
around a circle appears to be basic for the study of flows around given
bodles, as in the case of incompressible fluids.

CCMFRESSIBLE FLUILDS UNDER THE ASSUMFTION OF THE LINEARIZED EQUATION OF STATE

Of the four basic relations of the flow, equations (1) to (4), the
first, the egquation of state, 1s replaced by

pom-x(i-i ()
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where p; Jls the density for a given veloclty g3, and py is the cor—
responding pressure.

If pressure—volume curves are draswn of equations (1) and (77), it
is observed that when k i1s sultably chosen equation (77) represents =
line tengent to tle curve represented by equation (1) at the point p3,
l/pl. Von Kermeh and. Teien used this fact partly to Justify the use of
the linearized equation of state for the study of subsonic flows.

From equations (5) an? (77)

& k
E: = af = — e (78)
Hence

a® p2 = —k (19)
From equation (6)

2 2 2
%? t//ﬁ E;ge— dp = constant

and from equation (79)
2
%? + a2 Qéj/q Qg = constant
. o

Thus,
¢ — a® = constant (80)
It follows that
g2 —a2 = Eiéfi:;é
1/a®
M-1
—%/x
= constant
or
1 - M°

= constant (81)
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By the normalization, ag = pg = 1, the constents in the right—

hand sides of equations (80) and (8l) are readily determined to be minus
unity and unity, vespectlively. Thus, '

82 =14 ¢ o (8R)
and
p2 =1 — M2
g2
= ] - 5
l1+q
I (83)
1+ q2
From equation (77)
P =Dy = ki<;7-££—*—'~ L (84)
1+g2 py -

Agein, from the definitions of stream function ¢ and potential
functlon ¢ of an incompressible fluid

dp =udx + v dy

(85)
@y = —v dx + u dy
also .
dp = @ dx + @_ dy
* 7 (86)
af = Y dx + Wy ay
Comparing systems (85) and (86), it follows that
Py =V
£ (87)
Py = Vg

These are the Cauchy-Riemann equations. This establishes the well-imown
fect that the complex potential = ¢ + iy of an incompreesible flow is
en snalytic function of the complex variable 2z = x + 1y, the complex
coordinates in the physical plane.
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When the second of equations (85) is multiplied by 1 and the two
equations added
g = (u — 1iv) (a&x + i dy)

= q_e—ie dz (88)

or

dz=i~e an (89)

By proceeding as was done in the derivation of equations (2%), the
change of the variables (x,y) to the independent variables (6,q) in
equations (87) leads to equations

Ve = 4 Vg
N (90)
E -—w
q’q_ a =]
The transformation that will symmstrize system
Pg =Ty (a) ¥
4 (s1)
Pq =Tz (a) Vg
is glven by
~ T2(3)
= 220 49, 6=6 (92)
f Ti(q) !
System (90) is therefore symmetrized by the transformation
q
~ da a
= —= = log — (93)
q‘oo
and reduces to the Cauchy-Riemesnn equationsa
Py = Yo
8
4 (9%)

P = Ve
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Thus, the complex potential of anJincgmpressible flow, given in texrms of
the independent variebles of the 6, g-plene is an analytic function of
the complex varisble w = 6.+ iq. T

Egquations

(95)

can sgimilarly be symmetrized by the transformation
q .
- = e
q-=/’“—-——-—-“ ag (96)
. q _ .
- .

Equations (95) then become

J1 =M 7
Pg =" yg
] o vq
| > (97)
[ _ we
° J

However, under the assumption of the linearized equation of state

J1— M2
— =

1
80 that equations (97) becoms the Cauchy-Riemann squationa

P = Vg
* (98)

P =~V
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Agaln, the complex potential of a compressible flow under the assumption
of the linearized egquation of state is an analytic function of the com-
plex variable w = 6 4+ ig. The w-plane shall be referred to as the
distorted hodograph plane.

Any enslytic function of w may be regarded as the complex poten—
tial of either an incompressible flow in the physical plane or in the
hodograph plane, or a compressible flow in the distorted hodograph under
the assumption of this sectlon, end vice versa; then, in general, to
every incompressible flow around a given body with a given free-stream
velocity there corresponds a compressible flow (everywhere subsonic)
around the same body with the same free—stream velocity.

This correspondence can be eipressed as follows: Given the complex
potential Q(w) of an incompressible flow, or of a compresslble flow
in the distorted hodograph, then there exists an analytic function

w = g({) such that Qfg(f)] 1is the complex potential in the distorted
hodograph {-plane of a glven compressible flow.

Since
S 1
l_Maup, and. 0 = - ——

=Z ~ e (99)

and

@ = log ——————— (100}

where

1+,/1 2
K it e 2 (101)

Hence

of = — Ko (102)
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and N .
q
1.k & : (103)
q qu 2K
Also
1 _Axa®
Pq ]
q
- K, e (10k)
Eeq 2

Thue, equation (16) may be put into the more convenient form,
iz = & d(am) +_<Q_.—_Q.
q 2 o) 21
R Dy, R g (103)

From equations (103) and (10k), equation (105) becomes

16 16 § - _
K e e
dz = &— - i -—2 a0
2ETT SR 5 K
K iw 1 4w .- Y
== - = __ 106
Se d-=e 40 - (106)

where w =6 + 15. Thus, i ’ ' -

S e YT

where Q(w), the complex potential of a compregsible fluid in the dis—
torted hodograph plane, is an analytic function of w.

Since the complex potential of a compreésible Tluid remains the
complex potential of a compressible fluid under an analytic ﬁransforma—
tion, set -

w(t) = —i log %{% (108)
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or

ol¥ = 2 (f ) (209)
and

~iw _ KG!

e Vo= 'é—f-—'—%%‘ (llO)

where f(f{) and G(t) = Q[w(t)] are amalytic, f£({) being arbitrary
and G(f) the complex potential of an incompressible flow around &
given body in the physical {-~plane.

When w 1s considered a function of !, equation (107) may be
written asm

[3

z = gfeiw (€)ar (¢)at -+ /'e~iw(§)c;«(g)ag (111)

When equation (108) is substituted into equation (111), equation (111)
becomes

_ 1 [ [a 2 _
z = £(t) 4./ I—f'(%%— at (112)

It should be emphasized that f({) is an arbitrary analytic function of
{, while G({) is an incompressible flow in the {-plame, { being
the physical coordinates of the flow, and G({) =£)%w(§)] is the corre—
gponding compressible flow in the w-plans. The relation,

Im G(§) = Im QF({)]

= constant

represents streamlines of the lnccmpressible flow as well as etreamlines
of the compressible flow., If { moves along a streamline of the incom—
pressible flow, then w, : given by equation (108), traverses a stream-
line of the compressible flow in the hodograph plene and 2z, by the
transformation (108), traces out a streamline in the physicel plene of
the compressible flow. .

It is convenient to consider G{{) the incompressible flow around

o~
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a circle of radius R, with circulation T, and having a free—stream
veloclity I namely

6(¢) = a_ (g ¥ B—E) -4l 10g ¢ (113)

Since ei¥ = o#(0+13) 4% follows from equation (110) that

o et = S (114)
Thus, | | I
od = gi Gt (¢)
21f£r(¢)
and recalling the relation (102),
4 K2 . 24
t‘”
f£i

(115)

e

If, then, f(t) is so determined that a prescribed flow around a
given body is obteined, it foliows that for a given value { egquation
(112) determines s point of the flow and equation (115) determines the
velocity at that point.

At a stagnation point q = 0. From equation (115), g = O when
Gt(t) = 0. Thus, stagnetion points of the flow occur wherever stagna—
tion points occur in the incompressible flow G(!) in the {-plane.

Ifas f{—>c, z-—>m, and G'({) is bounded away from zero at
infinity, then, from equation (115), .f¥(f{) must be regular and unequal
to zero at infinity, if the flow is to have a velocity g, # O at in—
finity. Thus, the most general form that f£({) can have is

£(f) —b__l+b01§+bllog§+T\bn ~—, o # O (116)

-

n==2
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and

(L) =bo+bl-l~— ? (n-—l)bn-J:n (117)

where the values of b may bs complex constants,

It is known from incompressible—flow theory that uniform flows past
closed bodies must elso have thls form. Therefore, the second term in
the right-hand side of equation (112) takes the form

£ (L) :
=Gy + 0Ol + Cy log [ + T Cn __nl_l (118)
EE .

If the flow at infinity is to be horizontal spd Of magnituds Q.5
then from equation (114) and the fact that G = 0

X &' ()
¢ Szt (129)

When G(z) 4is given by equation (113),

o £1() = 1

{ >
-2 5 JE O]

K
=5 4, _ (120)

where cﬂ.mf‘ (g) @ by 1is the condition that the flow at Infinity be

horizontal and q = Q.

In order to efamine the shape of the body in the stream of the flow,
the circle { = Re*? 1 mapped through eguation (112) into the z~plane-
In order for the circle to map into a closed body, it follows from equa—
tions (116) and (118) that
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b1 itp--El ip =0
or

by —cy = O C T (as1)

It is of interest to note that, when f£({) ={, +the formula of
Teien (reference 6) is obtained; namely

z=g-%ft<‘r'<ofaz S 22

The coefficient in the integral term is different only because of a 4if-
ferent noxymalization.

Again, when

£(¢) =’/[‘[él(§)J i-1/n at

Bers! formuls is obtained; namely

N

- [ a g e e e

e o _

Here, too, the formulas differ only by a normslizing factor.

In Bers! formula n 1s arbitrary within limits. This freedom
enables him to determine the conditions for the flow around a closed
body. Since f£(f) in formula (112) is arbitrary and analytic, there is
en infinite number of arbitrary coefficients. The first two coefficients
determine the flow at infinity and that the flow be around a closed body.
The other erbitrary coefficients can be fixed to determine the flcw
around a given body.

A similar technique to that developed by Theodorsen and Garrick
(references li and 15) for determining the coefficients of f({) might
be developed in order to obtain a preseribed body. Bers has employsd
this approach by another method with some success. It should be noted
that when M = 0 the transformation (112) reduces to the initisl trans—
formation used by Theodorsen (reference 1li4). This implies that if an
integral equation were set up from equation (112) it would reduce to
Theodorsen's when M = 0, 8o that the integral eguation would be a
gensralization of Theodorsen's transformation.
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In another paper Bartnoff determined f(f) such thmt the circle

{ = ReiCP goes into a unit circle in the z—plane (accuracy to within
e few percent), thus glving the coupressible flow around a circle. Thie
has been done by others, notebly by Bers.

The right—hand side of the transformation (112) is invariant under
an analytic transformation. For, let —

¢ o= gle) (124)

be an analytic function of +£; then by direct substitution ¢l equation
(124) into equation (112), the tranaforasation becames

Al el 2
2=t [t ] ~%f{"/"§ SLUL (125)
d J T aptenan

Because the transformation (112) is invariant under a conformal
transformation the subsonic flow of a compressible fluid around a circle
is of basic iuportance,

Syracuse Unlversity,
Syracuse, New York, July 1, 1945.
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